
Special Problem 4.7-4

A **strange**, two-terminal device has the following relationship between the current through it (i) and the voltage across it (v):

$$i = 4 v + v^2$$

where ν is in volts and i in mA.

We can define the small-signal resistance r_{ss} of this device as:

$$r_{SS} = \frac{V_{SS}}{i_{SS}}$$

where V_{ss} is the small-signal voltage across the device and i_{ss} is the small-signal current through it.

- a) Determine the value of this small-signal resistance r_{ss} if the DC voltage across the device is V = 3.0 V
- b) Determine the small-signal voltage $v_{ss}(t)$ across this device if the **DC** voltage across it is 3.0 V, and the small-signal current i_{ss} through it is:

$$i_{ss}(t) = 0.2 \cos \omega t \text{ mA}$$